Podocalyxin regulates astrocytoma cell invasion and survival against temozolomide

نویسندگان

  • HAO WU
  • LIANG YANG
  • DAGUANG LIAO
  • YUDAN CHEN
  • WEI WANG
  • JIASHENG FANG
چکیده

Increased podocalyxin (PODXL) expression has been associated with a subset of aggressive types of cancer. To the best of our knowledge, the effect of PODXL on astrocytoma cell invasion and survival against chemotherapy agent was investigated for the first time in the present study. Overexpression and knockdown of PODXL were respectively performed in SW1783 (grade III astrocytoma) and U-87 (grade IV astrocytoma; gliobalstoma) cells. PODXL overexpression in SW1783 cells significantly increased cell invasion, matrix metalloproteinase-9 (MMP-9) expression, cell survival against temozolomide-induced apoptotic stress, and phosphorylation of Akt at serine 473 (ser473), which was abolished by the selective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (LY). Knockdown of PODXL in U-87 cells significantly decreased cell invasion, MMP-9 expression, cell survival against temozolomide, and phosphorylation of Akt at serine 473 (ser473), which was further decreased by LY treatment. In conclusion, in the present study it was demonstrated that PODXL promotes astrocytoma cell invasion, potentially through the upregulation of MMP-9 expression in a PI3K-dependent manner. Additionally, PODXL was shown to promote astrocytoma cell survival against temozolomide-induced apoptotic stress by enhancing the activation of the PI3K/Akt survival signaling pathway. This study provides novel insights into the molecular mechanisms underlying astrocytoma progression, cell survival and chemoresistance, and suggests that PODXL may be a potential target for overcoming chemoresistance in astrocytomas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of podocalyxin in astrocytoma: Clinicopathological and in vitro evidence

The present study examined the expression of podocalyxin (PODX) in surgically-resected astrocytomas, associated the levels of PODX expression with the clinicopathological characteristics and survival outcomes of astrocytoma and assessed how PODX affected the viability of astrocytoma cells following the administration of chemotherapeutic agents. The immunohistochemical analysis of 102 patient sa...

متن کامل

The Role of Hypoxia in Glioblastoma Invasion

Glioblastoma multiforme (GBM), a grade IV astrocytoma, is the most common and deadly type of primary malignant brain tumor, with a patient's median survival rate ranging from 15 to 17 months. The current treatment for GBM involves tumor resection surgery based on MRI image analysis, followed by radiotherapy and treatment with temozolomide. However, the gradual development of tumor resistance to...

متن کامل

Tbx2 confers poor prognosis in glioblastoma and promotes temozolomide resistance with change of mitochondrial dynamics

Tbx2 is a cancer-related protein that was found to be overexpressed in several human malignancies. The present study aims to investigate the clinical significance and biological role of Tbx2 in human astrocytoma. We examined its protein expression in 102 cases of astrocytoma tissues using immunohistochemical staining. Negative Tbx2 staining was observed in normal astrocytes, and positive nuclea...

متن کامل

Treatment of glioblastoma multiforme cells with temozolomide-BioShuttle ligated by the inverse Diels-Alder ligation chemistry

Recurrent glioblastoma multiforme (GBM), insensitive against most therapeutic interventions, has low response and survival rates. Temozolomide (TMZ) was approved for second-line therapy of recurrent anaplastic astrocytoma. However, TMZ therapy in GBM patients reveals properties such as reduced tolerability and inauspicious hemogram. The solution addressed here concerning GBM therapy consolidate...

متن کامل

Molecular mechanisms of temozolomide resistance in glioblastoma multiforme.

Glioblastoma multiforme (GBM; WHO astrocytoma grade IV) is considered incurable owing to its inherently profound resistance towards current standards of therapy. Considerable effort is being devoted to identifying the molecular basis of temozolomide resistance in GBMs and exploring novel therapeutic regimens that may improve overall survival. Several independent DNA repair mechanisms that norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013